On the range of the derivative of Gâteaux-smooth functions on separable Banach spaces
نویسندگان
چکیده
We prove that there exists a Lipschitz function from l into IR which is Gâteaux-differentiable at every point and such that for every x, y ∈ l, the norm of f (x) − f (y) is bigger than 1. On the other hand, for every Lipschitz and Gâteaux-differentiable function from an arbitrary Banach space X into IR and for every ε > 0, there always exists two points x, y ∈ X such that ‖f (x)−f (y)‖ is less than ε. We also construct, in every infinite dimensional separable Banach space, a real valued function f on X, which is Gâteaux-differentiable at every point, has bounded non-empty support, and with the properties that f ′ is norm to weak continuous and f (X) has an isolated point a, and that necessarily a 6= 0. 1991 Mathematics Subject Classification : primary : 46 B 20, secondary : .
منابع مشابه
On Fréchet differentiability of convex functions on Banach spaces
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function f defined on a separable Banach space are studied. The conditions are in terms of a majorization of f by a C-smooth function, separability of the boundary for f or an approximation of f by Fréchet smooth convex functions.
متن کاملExact Filling of Figures with the Derivatives of Smooth Mappings between Banach Spaces
We establish sufficient conditions on the shape of a set A included in the space Lns (X, Y ) of the n-linear symmetric mappings between Banach spaces X and Y , to ensure the existence of a C-smooth mapping f : X −→ Y , with bounded support, and such that f (X) = A, provided that X admits a Csmooth bump with bounded n-th derivative and dens X = densL(X, Y ). For instance, when X is infinite-dime...
متن کاملOn Gâteaux Differentiability of Pointwise Lipschitz Mappings
Abstract. We prove that for every function f : X → Y , where X is a separable Banach space and Y is a Banach space with RNP, there exists a set A ∈ Ã such that f is Gâteaux differentiable at all x ∈ S(f) \ A, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is...
متن کاملApproximation by Smooth Functions with No Critical Points on Separable Banach Spaces
We characterize the class of separable Banach spaces X such that for every continuous function f : X → R and for every continuous function ε : X → (0,+∞) there exists a C smooth function g : X → R for which |f(x)− g(x)| ≤ ε(x) and g′(x) 6= 0 for all x ∈ X (that is, g has no critical points), as those infinite dimensional Banach spaces X with separable dual X∗. We also state sufficient condition...
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کامل